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Microevolution of Pseudomonas aeruginosa in the 
airways of people with cystic fibrosis
Nina Cramer1, Jens Klockgether1 and Burkhard Tümmler1,2

The chronic infections of cystic fibrosis (CF) airways with 
Pseudomonas aeruginosa are a paradigm of how environmental 
bacteria can conquer, adapt, and persist in an atypical habitat 
and successfully evade defense mechanisms and 
chemotherapy in a susceptible host. The within-host evolution 
of intraclonal diversity has been examined by whole-genome 
sequencing, phenotyping, and competitive fitness experiments 
of serial P. aeruginosa isolates collected from CF airways since 
onset of colonization for a period of up to 40 years. The 
spectrum of de novo mutations and the adaptation of 
phenotype and fitness of the bacterial progeny were more 
influenced by the living conditions in the CF lung than by the 
clone type of their ancestor and its genetic repertoire.
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Introduction
Unlike numerous viruses such as the herpesviruses that 
infect humans early in life and may persist lifelong in 
latent form, long-term infections of a human host with 
bacteria are currently confined to a few species, namely 
Mycobacterium tuberculosis, Helicobacter pylori, and 
Pseudomonas aeruginosa. H. pylori and M. tuberculosis were 
already prevalent in humans in prehistoric times, but the 
chronic airway infections with P. aeruginosa in patients 
with cystic fibrosis (CF) emerged just 60 years ago. 
Hereunder, we review our current knowledge of the 

microevolution of P. aeruginosa in the CF airways, in-
cluding key features of P. aeruginosa, the CF host, and 
their interaction within the airways. The focus will be 
laid upon own work executed within the frame of the 
Collaborative Research Centre 900 supported by the 
German Research Foundation (DFG), but moreover, we 
will summarize general knowledge and important con-
tributions of our peers with emphasis on publications for 
the period 2018– 2022.

Pseudomonas aeruginosa: lifestyle, 
pathogenicity, and population biology
P. aeruginosa is a metabolically versatile Gram-nega-
tive bacterium that is ubiquitously present in in-
animate soil and aquatic habitats at low frequency and 
can colonize the animate surfaces of plants, animals, 
and humans. The bacterium preferentially thrives and 
outcompetes other microbes in nutrient-poor aquatic 
habitats making the hospital environment a favorable 
niche to take residence [1]. Hospitals accommodate 
large proportions of vulnerable individuals with re-
duced defense mechanisms who are prone to nosoco-
mial infection and thus may acquire P. aeruginosa from 
inanimate or animate sources.

P. aeruginosa is classified as an opportunistic pathogen 
that causes a wide range of infections in humans, in-
volving nearly all-body systems, which vary from local to 
systemic and from self-limiting to life-threatening [2]. 
The bacterium is equipped with a lowly permeable 
outer membrane and multiple transport systems, ren-
dering it naturally resistant to many antimicrobial agents. 
Moreover, P. aeruginosa may acquire resistance to nearly 
all available antimicrobials by genomic mutation or 
horizontal uptake of resistance determinants [3]. Con-
sequently, the World Health Organization (WHO) has 
included P. aeruginosa into the ESKAPE pathogens that 
are a global threat because of their capacity to become 
increasingly resistant to all available antibiotics [4]. 
Multidrug-resistant (MDR) P. aeruginosa strains are more 
frequently found in intensive care units (ICU) than in 
non-ICU settings, except for respiratory isolates, which 
generally have high rates of MDR P. aeruginosa in the 
hospital environment [5]. Recurrent infections of the 
urogenital tract are frequent in individuals with para-
plegia and chronic infections are mainly seen in the re-
spiratory tract of individuals with chronic obstructive 
pulmonary disease (COPD), bronchiectasis, and CF.
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Cystic fibrosis: inherited susceptibility to 
airway infections 
CF is a severe autosomal-recessive trait caused by mu-
tations in the CFTR gene that encodes an epithelial ion 
channel for the secretion of chloride and bicarbonate 
into the ducts of all exocrine glands [6]. In CF, the re-
duced pH of airway surface liquid and the reduced 
chloride secretion impair bacterial killing by the innate 
immunity and the detachment of mucus from sub-
mucosal gland ducts [7]. Mucus plugging in the ducts 
predisposes to colonization with opportunistic patho-
gens, first Staphylococcus aureus and later in life P. aeru-
ginosa, that initiates a vicious cycle of infection, 
inflammation, and tissue remodeling, which — if un-
treated — leads to a continuous decline of lung function 
and finally to premature death because of respiratory 
insufficiency [6]. However, during the last 50 years, ef-
ficacious therapeutic measures have been developed to 
contain infection and inflammation [8]. 

Clinical epidemiology of the chronic airway 
infections with P. aeruginosa in cystic fibrosis 
CF is a moving target for P. aeruginosa. In the early 1980s 
when no therapeutic guidelines existed, the first detec-
tion of P. aeruginosa in the patient’s respiratory secre-
tions was classified as the ‘harbinger of death for any 
patient’ [9]. By 2022, the carriage of P. aeruginosa is still a 
substantial comorbidity, but not anymore a risk factor for 
a poorer prognosis. More the opposite, the elderly CF 
‘survivors’ have a better outcome than their peers if they 
are chronically colonized with slow-growing, attenuated 
P. aeruginosa [10]. In other words, the course and prog-
nosis of the Pseudomonas infections in CF have been 
substantially influenced by the temporal changes of 
treatment modalities and of median survival that im-
proved, for example, in Germany from 9.2 years in 1980 
to 54.2 years for the period 2015–2019 [11]. 

Once P. aeruginosa has taken permanent residence in the 
small conducting CF airways, one can suppress the 
bacterial load by topical and/or systemic antimicrobial 
chemotherapy and thereby reduce inflammation and 
improve lung function, but it is virtually impossible to 
eradicate the microorganism by antimicrobials [12]. 
Hence, protocols for the early intervention upon positive 
P. aeruginosa culture have been developed, and inhaled 
tobramycin or colistin were indeed successful to shift the 
average onset of chronic airway colonization from school 
age to early adulthood [12,13]. Meanwhile, highly effi-
cient cystic fibrosis transmembrane conductance reg-
ulator (CFTR) modulators, which partially reverse the 
basic defect, have become available to 90% of people 
with CF [14,15]. Continuous triple-combination therapy 
with Elexacaftor/Tezacaftor/ Ivacaftor removed P. aeru-
ginosa from chronically colonized CF airways [16]. Cur-
rent real-world epidemiologic data from the German CF 

registry indicate that the success rate differs by age 
group and colonization status between 15% and 50% 
(Sieber et al., submitted). Thus, by 2022, the lifelong 
airway infections with P. aeruginosa in CF have been 
transformed to a condition amenable to therapeutic 
elimination by CFTR modulators. 

Microevolution of P. aeruginosa genotype in 
cystic fibrosis airways 
Within-host evolution of P. aeruginosa was deduced from 
whole-genome sequencing of serial CF isolates of 
lineages collected since onset of colonization in patients 
seen at the CF clinics in Copenhagen and Hannover  
[17–23] (Figure 1) or whole-genome sequence compar-
isons of large collections of CF and non-CF isolates [24] 
(reviews: [25,26]) (Table 1). Non-neutral mutations 
predominantly emerged in P. aeruginosa genes relevant 
for protection against and communication with signals 
from the lung environment, that is, antibiotic resistance, 
cell-wall components, and two-component systems [26]. 
Within CF lungs, the disease-specific hot spots of mu-
tation are P. aeruginosa genes that govern the stringent 
response (relA/spoT), modulate the composition of man-
nuronic and guluronic acid in the exopolysaccharide al-
ginate (algG), or modify the core oligosaccharide of the 
highly immunogenic lipopolysaccharide (LPS) for im-
mune evasion of the host response (pagL) [27]. Like in 
other human infections, loss-of-function mutations in 
lasR perturb or rewire quorum sensing (QS), a three-unit 
regulatory system that controls the expression of viru-
lence factors and secreted public goods [28,29]. Loss-of- 
function mutations in mutS, mutL, or uvrD inactivate the 
mismatch repair system and lead to hypermutable strains  
[30] that accumulate point mutations [17] and tolerate 
the insertion of mobile genetic elements [22]. 

We have collected serial semiannual P. aeruginosa iso-
lates from all CF patients regularly seen at the CF clinic, 
Hannover, who became chronically colonized in their 
airways between 1982 and 1991. Most patients were 
chronically carrying the initially acquired clone for ten 
years or more and were transiently cocolonized for a few 
months with up to four further clones during the initial 
30-year observation period [31]. We examined the 
genome evolution of the initially acquired P. aeruginosa 
clone in the six most severely affected patients of our 
cohort until fatal outcome because of respiratory in-
sufficiency and in the six mildest courses until replace-
ment by another P. aeruginosa clone [22]. By 2022, the 
five patients alive enjoy a close-to-normal lung function 
and a normal family and working life despite an almost 
40-year airway colonization with P. aeruginosa. 

The genetic adaptation of P. aeruginosa to the CF air-
ways was driven in these 12 patients by the extent of 
bronchial inflammation and structural damage of the CF 
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lungs at the time when P. aeruginosa took residence in 
the patient’s airways [22]. The acquisition of loss-of- 
function mutations was prominent during fatal downhill 
courses of infection, whereas the genomic gain of me-
tabolic versatility by horizontal gene transfer was typical 

for mild courses of infection [22]. Insertions of phages, 
transposons, integrons, and IS elements confer meta-
bolic genes, virulence, and resistance determinants but 
also inactivate genes at the site of integration. Plasmids 
and more often mobile integrative and conjugative 

Fig. 1  
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Phylogenetic trees of serial P. aeruginosa isolates from CF airways. Microevolution of P. aeruginosa during chronic infection of CF airways is 
demonstrated by phylogenetic trees of sequential isolates based on maximum likelihood analysis. Isolates from persisting clonal lineages were 
collected from six patients (I–VI) over periods of 10–16 years. Isolates within a course were differentiated by ongoing numbers increasing over time. 
Genome sequencing allowed detection of point mutations and generation of consensus sequences that were applied to genome alignments for all 
isolates of a patient’s course. From these alignments, rooted maximum likelihood trees were generated by applying 1000 bootstrap replicates and 
different nucleotide substitution models. The respective tree, which scored the highest overall maximum likelihood value, was selected for displaying 
the microevolution within an isolate course. Branch lengths represent the number of nucleotide substitutions per site that had occurred in the genome 
sequences of the corresponding isolates. To generate rooted phylogenetic trees, the sequence of the earliest isolate in a course was defined as the 
outgroup sequence from which the later isolates have evolved. The displayed trees demonstrate different microevolution modes with diversification 
mainly occurring in either one branch only or in several branches in parallel and with different substitution rates. Please note that maximum likelihood- 
based phylogenies do not display the time points of sampling of the isolates so that the time of persistence of branches or sublines cannot be seen as 
ordinate values in the figures. The increasing numbering of isolates according to the sampling date, however, allows the deduction of information on 
differentially evolved sublines with individual substitution rates that have persisted in the airways of the respective CF patient.   
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elements [32] modify virulence and fitness already by 
episomal copy number variation [33]. Particularly in-
ducible genomic prophages were shown to regulate fit-
ness, pathogenicity, and bacterial population density  
[34–36]. The gain and loss of genomic islands called 
RGPs, regions of genomic plasticity, were often ob-
served in serial isolates from CF patients [33,37,38]. We 
still do not know much about the emergence of more 
complex structural variants in the P. aeruginosa chromo-
some, but according to own analyses of clone C and 
clone PA14 strain collections by physical mapping and 
long-read sequencing, large genome rearrangements 
occur frequently in CF isolates. For example, in-
tramolecular transposition of an active IS element will 
typically lead to large chromosomal inversions accom-
panied by mutation, deletion, and/or duplication of se-
quence close to the breakpoints [39]. A further virtually 
still unexplored area is the microevolution of the epi-
genome of P. aeruginosa. SMRT sequencing of serial CF 
isolates did not only identify the methylated recognition 
sites of restriction-modification systems but also spatio-
temporal genomic variation of the methylation rate (Fi-
scher, unpublished). 

Microevolution of P. aeruginosa phenotype in 
cystic fibrosis airways 
P. aeruginosa continuously diversifies its phenotype in 
CF lungs (Figure 2). During the phase of chronic colo-
nization, the colonies of primary cultures of respiratory 
secretions will vary in morphotype, metabolic compe-
tence, QS signaling, virulence, motility, antimicrobial 
susceptibility, biofilm formation, and binding to human 
mucins and epithelia [40–44]. Most diversifications re-
vert to the common phenotypes of an environmental 

isolate by repeated subculturing in vitro, but a few 
phenotypic traits are irreversibly fixed [44]. First, during 
the first years within the CF lung, a P. aeruginosa clone 
will reduce its repertoire of phage receptors and pyocins, 
indicating that the persistent clone succeeded to elim-
inate clonal competitors and to become resistant to 
phage attacks. In line with these observations, long-term 
cocolonization with two or more clones is rare. Second, 
the clone diversifies into planktonic and sessile sub-
clones, the latter residing in the bronchial lumen em-
bedded into own exopolysaccharides and human mucins. 
The sessile subclones lose flagella and pilins and be-
come nonmotile and lowly virulent, whereas the plank-
tonic cells retain their virulence effectors. With respect 
to the highly immunogenic LPS, strains modify or lose 
the O-antigen and modify their lipid-A promoting im-
mune evasion, inflammation, and resistance to cationic 
antimicrobial peptides. Morphotypes reside side-by- 
side, the hallmarks being the more virulent and more 
drug-resistant small colony variants and the biofilm- 
forming mucoid colonies. The alginate-overexpressing 
phenotype is characteristic for CF isolates and very un-
common in other habitats. Mucoidy typically emerges 
during the first years of airway colonization, but five to 
fifteen years later, nonmucoid revertants appear that are 
often auxotrophic and attenuated in virulence. These 
slow-growing auxotrophic variants are seen in elderly CF 
patients with poor lung function. Being deficient in one 
or more metabolic pathways of amino acid biosynthesis, 
the auxotrophs thrive in the bronchial lumen of a heavily 
remodeled lung that provides plenty of amino acids as 
nutrients. 

Impact of microevolution on fitness 
To examine the change of fitness during chronic colo-
nization of CF airways, we simultaneously exposed 
clonal serial CF isolates to a range of habitats, that is, 

• nutrient-poor and nutrient-rich liquid media re-
presentative for the typical aquatic habitat of P. aer-
uginosa [45],  

• the lung model of murine and human-precision-cut 
lung slices (PCLS) [46], 

• and human granulocytes, man’s major cellular de-
fense against infections with P. aeruginosa [47]. 

Serial isolates were selected from the six mildest and six 
most severe courses of chronic infection seen at the CF 
clinic, Hannover (see above). Growth and persistence of 
bacteria were monitored by amplicon sequencing of 
strain-specific single-nucleotide variants. Unexpectedly, 
the outcome of the competitive fitness experiments was 
similar for all investigated habitats. The serial CF iso-
lates from the mild courses showed individual clone- 
specific patterns of growth and survival, although the 
early isolates were on average fitter than the midterm or 

Table 1 

Whole-genome sequencing of serial P. aeruginosa isolates from 
the airways of people with CFa.       

No. of 
patients 

No. of 
sequenced 

No. of 
clone 

Time span of Reference   

isolates types within-host 
evolution 
(years)  

2 45, 63 2 20, 23 [17] 
34 474 36 1–8 [21] 
4 26 6 17–19 [53] 
12 262 12 10–35 [22] 
1 40 1 8 [54] 
39 443 52 0.2–10 [23] 
Hypermutator lineages 
2 13, 14 2 6, 20 [20] 
Transmissible lineages causing nosocomial spread at a CF center 
21 55 1 36 [18,19] 
6 63 1 3–4 [55] 
Longitudinal isolates from the sinuses 
6 67 6 2–3 [43] 

a Only studies were considered that sequenced the genomes of at 
least three serial isolates.  
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late isolates to persist in the presence of their clonal 
relatives. In contrast, the strain collections from the se-
vere courses showed a uniform outcome. The early iso-
lates that differed least in their genomic profile from the 
environmental ancestor outcompeted their clonal pro-
geny: the early isolates were growing better in nutrient- 
rich and nutrient-poor media, they outcompeted the 
progeny in murine as well as in human PCLS, and they 
were more resistant to intracellular killing by neu-
trophils. Hence, the outcome of the fitness experiments 
differed by the status of CF lung disease at the time 
when P. aeruginosa conquered the CF airways. In case of 
the mild courses, lung function and host defense were 
close to normal at onset of colonization. In case of the 
severe courses, lung function was already compromised 
when P. aeruginosa was acquired. The vicious cycle of 
infection, inflammation, and remodeling was already 
operating from the beginning, and under these living 
conditions, bacterial progeny with lower general fitness 
emerged that did not persist as well in an aquatic habitat 

or healthy lungs as its ancestor. In summary, the disease 
status of the CF lung habitat governed the adaptation of 
P. aeruginosa more strongly than the underlying clone 
type and its genetic repertoire. 

Comparison of within-host evolution in M. 
tuberculosis, H. pylori, and P. aeruginosa 
The evolutionary dynamics within human hosts is dif-
ferent among the three taxa. Within susceptible human 
hosts, the molecular clock rates of nonmutator strains 
range between 10-8 and 5x10-7 nucleotide changes per 
site per year in M. tuberculosis [48] and range between 10- 

6 and 10-5 in both H. pylori [49] and P. aeruginosa [22]. Of 
the three species, M. tuberculosis shows the lowest rate of 
genome diversification during host–pathogen coevolu-
tion. There are currently 53 sublineages within the nine 
recognized major lineages of the clonal M. tuberculosis 
populations [50]. H. pylori and P. aeruginosa show a 
considerably higher genomic diversity within the in-
dividual human host and the global human population. 

Fig. 2  
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Phenotypic characterization of sequential P. aeruginosa isolates from chronic CF lung infections. In order to investigate the microevolution of P. 
aeruginosa in the lungs of CF patients, extensive phenotyping of serial isolates was carried out in addition to genotyping. For presentation of the 
results of the phenotypic characterization, six long-term courses were selected as examples (I–VI) and the results of four different phenotypic assays 
(hemolysis, twitching, protease, and siderophore secretion) are displayed. For the evaluation of the various assays, the diameter of the grown colony 
was measured, the mean was calculated and normalized to the isolate with the largest diameter within the individual long-term course. All assays were 
performed in triplicate. The box plots in the upper panel demonstrate the high variability of secretion and motility phenotypes observed for the different 
courses. The lower panel shows the results for all single isolates. The isolates are displayed by varying colors according to the date of isolation (color 
gradient from orange for early isolates to blue for late isolates). Contrary to the literature, the plots demonstrate that serial P. aeruginosa progeny was 
not continuously losing all of their virulence phenotypes during long-term adaptation to the CF lung. Instead, virulent variants were often detected over 
the entire time course of the chronic infection.   
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The naturally competent H. pylori, which grows in the 
human stomach, gains a substantial amount of sequence 
diversity by the uptake of short DNA fragments via re-
combination (see the article by Sebastian Suerbaum and 
his colleagues in this issue). In contrast, P. aeruginosa 
changes its genome organization by chromosomal uptake 
and release of mobile genetic elements [38], duplica-
tions, deletions, and large-scale inversions or transposi-
tions [51,52]. Within CF hosts, the mutation rate of P. 
aeruginosa was highly variable ranging from five to eighty 
single-nucleotide substitutions per year in the core 
genome and in total two to sixteen major rearrangements 
of the accessory genome [22]. 

In summary, the within-host evolution triggers conver-
sions of genotype and phenotype that attenuate the 
global fitness of the ubiquitous P. aeruginosa to thrive in 
any aquatic animate and inanimate habitat. However, 
during adaptation to the CF lung, P. aeruginosa retains 
enough flexibility to recognize its environment of host 
cells and polymers and to respond to selective pressures 
of host defense, antipseudomonal chemotherapy, and 
other microbes in the lung holobiome. 
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quantified by strain-specific multimarker amplicon sequencing. Both 
ex vivo models displayed a strong separation of fitness traits between 
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conclusion that it is the status of CF lung disease rather than the 
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